
The thermal conductivity in one-dimensional monatomic lattices with harmonic and quartic

interatomic potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 3013

(http://iopscience.iop.org/0953-8984/6/16/006)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 18:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 6 (1994) 3013-3024. Printed in lhe UK 

The thermal conductivity in one-dimensional monatomic 
lattices with harmonic and quartic interatomic potentials 

Yuuki Ohtsubot, Norihiko Nishiguchit and Tetsuro Sakumaf 
t Depamnent of Engineering Science, Hokkaido Univerity. Sapporo 060, Japan 
t Tomakomai National College of Technology, Tomakomai 059-12. Japan 

Received 9 November 1993. in final form 21 January 1994 

Abstract. We analyse heal transport phenomena in a one-dimensional monatomic lattice with 
harmonic and quartic interatomic potentials by means of the molecular dynamics technique, 
paying special attention to non-diffusive heat Row and local temperature profiles in steady non- 
equilibrium slates. The non-diffusive heal current is attributed to modified KDV solitons, which 
decay through collisions with phonons with shon wavelengths. Hence. the non-diffusive heat 
flow does not propagate beyond a critical distance l.,. We confirm lhe anomalous diffusion 
of energy due to non-diffusive heat flow in steady nonequilibrium slates for systems smaller 
than lhe critical length IC- The non-diffusive heat current does not contribute to the total heat 
flow for Lattices larger than the critical length 1,. The existence of Fourier’s law is confirmed 
from first principles for the lattices. The temperature profiles become linear, and the resultant 
thermal conductivity is independent of the local temperatures of the lattice. in accordance with 
the temperatures profiles, so the local energy conservation law holds. 

1. Introduction 

Fourier’s heat law is a well known phenomenological law that describes heat transport 
phenomena in solids, and is used in all fields of science and engineering. Although a number 
of numerical simulations has been performed for the derivation of Fourier’s law from first 
principles, most attempts failed to exhibit the existence of Fourier’s law since the resultant 
thermal conductivity depended on the system sizes [I-91. After a series of disappointing 
results, Mokross and Biittner [IO] suggested that a one-dimensional (ID) diatomic Toda 
lattice would be a candidate for normal thermal conductivity. Jackson and Mistriotis [ 1 I ]  
investigated the heat transport in the same kinds of lattice with larger sizes than those of 
Mokross and Biittner, and concluded the existence of Fourier’s law. 

The numerical simulations for the heat transport were performed based on various 
postulates made so far. One of the postulates is that linear temperature profiles should appear 
in steady non-equilibrium states. The resultant temperature profiles became, however, often 
not linear but curved [S, 10,111, but were approximated by straight lines for estimation 
of the thermal conductivity. The temperature profiles cannot be linear, to satisfy the 
local energy conservation law in the steady non-equilibrium states, where the thermal 
conductivity depends on local temperature. The approximation of the temperature profiles 
by straight lines hence discards the information on the temperature dependence of the 
thermal conductivity. Another postulate is that the total heat current flows diffusively. 
Incident energy pulses from the heat baths do not necessarily spread diffusively but propagate 
ballistically, as observed in some numerical experiments [ S .  1 I]. Another example of the 
non-diffusive energy flow was given by Schneider and Stoll [12,13]. They investigated 
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numerically and analytically dynamical properties of ID sineGordon and 44 systems, 
exhibiting the existence of non-diffusive energy flow due to kink solitons, which disappear 
at high temperatures. The non-diffusive heat flow does not obey Fourier's law, leading 
to an undesirable non-local property of the heat transport. Therefore the total heat current 
should be treated carefully for the estimation of the thermal conductivity, particularly for 
small systems. 

The present authors 1141 re-examined the heat transport in the one- and two-dimensional 
(2D) diatomic Toda lattices, paying special attention to the temperature profiles and to the 
non-diffusive heat current. The temperature profiles for both cases were well fitted with 
exponential functions with respect to distance from an end of the lattice, and the temperature 
gradient became proportional to the local temperature T accordingly. Because the heat 
current is constant through the lattice in the steady non-equilibrium states, the thermal 
conductivity was required to be inversely proportional to the local temperature T, 5 f T, 
'where 5 is a constant. Assuming that the total heat current consisted of the non-diffusive 
and diffusive currents, we confirmed the existence of Fourier's law by excluding the non- 
diffusive or ballistically propagating heat current from the total energy flow. We also 
confirmed the existence of Fourier's law in ID quasi-periodic Toda lattices [15,16] and 2D 
monatomic Toda lattices [17] in the same manner. 

Recently, Bourbonnais and Maynard [I81 reported anomalous energy diffusion, leading 
to anomalous thermal conductivity, in 1D and 2D disordered lattices with very large quartic 
potentials. The magnitude of the quartic potentials is from 0.5 to Z?" times as large as that of 
the harmonic potentials. They examined the time evolution of spatial distribution of energy 
by means of the molecular dynamics technique and concluded that the energy spreading was 
different from the usual diffusion process. They attributed the anomaly to the delocalization 
of lattice-vibrational localized modes, referred to as Anderson localization [2,19], caused by 
the large anharmonicity. Anderson localization is a phenomenon due to an interference effect 
among multiply scattered lattice-ribrational waves. The large anharmonicity significantly 
shortens the phase coherence length of the lattice-vibrational waves, and consequently the 
Anderson localization would not occur in this regime. Thus, it is hard to attribute the 
anomalous diffusion to the Anderson localization in strongly anharmonic lattices. Although 
a contribution from the non-diffusive energy flow, mainly due to the excitation of solitons, 
is also expected in the system, the non-diffusive energy flow has not been studied even 
in the case of monatomic lattices with such large anharmonicity in non-equilibrium states. 
The aim of this paper is to study the energy transport in a monatomic lattice with large 
anharmonicity and make it clear whether the system obeys Fourier's law, paying special 
attention to the non-diffusive energy flow, 

In this paper, we investigate the heat transport in ID monatomic lattices with harmonic 
and large quartic interatomic potentials. by means of the molecular dynamics technique. 
The plan of this paper is as follows: in section 2, we describe the model and the molecular 
dynamics technique for simulations. In section 3, the temperature profiles are obtained and 
fitted with an empirical formula. In section 4, the thermal conductivity is estimated by using 
the empirical formula for the temperature profiles. based on the assumption of the presence 
of the two different kinds of heat flow mentioned above. A summary and discussion are 
given in the last section. 

2. Model and numerical simulations 

We consider a 1D monatomic lattice with the harmonic and quartic interatomic potentials. 
Because direct linkage of the lattice to heat baths causes deformation of temperature profiles 
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in the vicinity of the interfaces due to thermal boundary resistance [ZO], we put monatomic 
Toda lattices of 10 atoms as buffer areas between the specimen lattice and the heat baths 
to reduce the effects of the thermal boundary resistance on the temperature profiles. The 
experimental situation is shown in figure 1. 

specimen 

Figure 1. The model and the experimental situation for the ID monatomic lattice. Circles denote 
the a t o m  and their masses m are set to unity in the numerical experiments. There are buffer 
areas at both ends of the specimen lanice in order to reduce deformation of the temperature 
profile due to thermal boundary resistance. The buffer areas consist of monatomic Toda lltices 
whose masses are also set to unity here. The lattice is heated by the elastic collisions of atoms 
between the lattice ends and the heat baths whose temperatures are E)H and E)L 

The total energy of the lattice is given by 

+ V(ui - ui-1) 1 + interaction with heat baths 
i = l  

where pi and U ;  are the momentum and displacement of the ith atom, respectively, and m 
denotes the atomic mass, which is set to unity in this paper. N' is the number of atoms 
in the lattice, and then the size of the specimen lattice N is given by N = N' - 20. The 
interatomic potential V ( r )  in the Hamiltonian for the specimen lattice is given by 

where r is the relative displacement. The potential parameters a and b are set to 1 and 
10, respectively. The interatomic potential V ( r )  for the buffer areas is given by the Toda 
potential [21] defined by 

where the potential parameters f, g and h are set to unity. 
Energy is exchanged through elastic collisions between the end atoms and gas particles 

in the heat baths with prescribed temperatures On and OL. The gas particles in the heat 
baths are assumed to obey the Maxwell distribution in velocity. 
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The equation of motion is integrated numerically by means of the Runge-Kutta-Gill 
method. The time interval is chosen suitably so that the computational errors in the 
total energy conservation will be suppressed within 0.1% of the total energy through the 
experiments. 

The ID monatomic Toda lattices are integrable, having non-linear normal modes referred 
to as Toda solitons. Since the Toda solitons carry ballistically all the energies without 
diffusion in the buffer areas, there is no temperature gradient in the buffer areas. The 
1D monatomic lattices with harmonic and quartic potentials also have non-linear normal 
modes referred to as modified KDV (MKDV) solitons in the long-wavelength limit. On the 
other hand, non-diffusive normal modes with short wavelengths do not exist. Then the 
lattice vibrations with short wavelengths are simply expressed as phonons interacting via 
the quartic lattice anharmonicity, leading to irreversible behaviour of the system above a 
critical temperature T ,  1221. 

At very low temperatures where lattice anharmonicity can be ignored, all vibrational 
excitations are phonons, which propagate ballistically in the lattice, resulting in no 
temperature gradient in steady non-equilibrium states. Above the critical temperature T,,, the 
lattice vibrations with short wavelengths, which are responsible for local thermal equilibrium 
and for temperature gradients in non-equilibrium states, carry energy diffusively in the steady 
non-equilibrium states. Low-frequency lattice vibrational modes are changed from phonons 
to MKDV solitons. In contrast to the high-frequency phonons. the MKDV solitons may lead 
to undesirable non-local heat transport properties even above the critical temperature Tw. It 
should be noted here that the ballistic propagation of the MKDV solitons will be limited due 
to collisions with phonons with short wavelengths in the high-temperature region because 
the MKDV solitons become unstable for collisions with the phonons and will propagate 
diffusively. Hence the normal thermal conductivity is expected for large lattices where the 
contribution of the MKDV solitons to heat transport is ignored. 

Stochastic behaviour of the system is believed to be related to irreversibility, and 
divergence of trajectories starting from close points in the phase space has often been 
investigated quantitatively. Thereby we evaluate the Lyapunov exponent describing the rate 
of divergence in thermal equilibrium states. In contrast to thermal equilibrium states, the 
dynamical behaviour within a short time interval r ,  which is characteristic of the system, is 
essential to the thermodynamic behaviour in the non-equilibrium states. The time interval 
T is taken to be a travelling time of an energy pulse through the lattice, i.e. r = N / u ,  
where U is the velocity of the energy pulses. Even a non-integable system would not 
exhibit irreversibility with a characteristic time interval T shorter than that T,, of the loss of 
correlation between initial and final positions in the phase space. How fast the correlation 
is lost depends on the strength of lattice anharmonicity and lattice temperature. For normal 
thermal conductivity, the dynamical irreversible behaviour must appear, at least, within the 
short time interval T. In order to check the critical temperature T,, where the dynamical 
behaviour of the system becomes irreversible, we investigate divergence of trajectories in 
the phase space in the short time interval T. The type of divergence of trajectories is judged 
by the value of the quantity p( r )  defined by 

Here d( t )  is the distance between two trajectories a! and ,9 starting in the neighbourhood of 
a point (qr,  p r )  in the phase space, given by 



Thermal conductivity in ID monatomic lattices 3017 

The distance d( t )  is approximated for 0 < t < t by a function of the form 
A(qr,  p r ,  t )  exp[k(qr. pr, t ) t ]  and also by a linear function of the form B(qr .  p r ,  t ) f  + 
C(qr, p r ,  t )  using the least-squares method. Here 4,' and pg denote the position and 
momentum, respectively, of the ith atom on the trajectory a. Therefore, negative p denotes 
that the divergence of trajectories is close to exponential behaviour and, therefore, that 
irreversibility can be expected. We calculated the local rate of divergence 100 times at each 
value E / N  of energy per atom. The test was performed numerically and the ratio of the 
number MI of exponential developments to the number M of total trials was obtained for 
the energy E / N  per atom. The ratio gives the probability that the system exhibits stochastic 
behaviour. Figure 2 shows the resultant probability versus E / N  for the lattices with N = 
80, 180 and 280. Since the velocity of the pulses is 5 sites per unit time, the corresponding 
time intervals r are 16, 36 and 56, respectively. The critical magnitude E,JN for the 
stochastic behaviour is 0.015 for N = SO and decreases with the lattice size N. Since the 
energy per site is almost equal to the lattice temperature, we put the critical temperature T,, 
as Tm = 0.015 for N = 80. Then we study the heat transport in lattices larger than N = 80 
above T,, = 0.015 in this paper 

.o" 
Figure 2. The probability in the phase space that the system exhibits stochastic behaviour 
versus the energy per atom for the monatomic lattice with the harmonic and quartic interatomic 
potential with N = 80. 180 and 280. "he velocity of pulses v is five sites per unit time. The 
corresponding characteristic time interval r is obtained by N J v  as 16, 36 and 56, respectively. 

3. Temperature profiles and heat current 

The local temperature is defined to be twice the averaged local kinetic energy as follows: 
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T, +). 

, Here :he angular brackets denote the time average. We obtain the temperature profiles 
for several temperature regions, varying the heat bath temperature whilst keeping the ratio 
constant, i.e. OH/@ = 4, through the experiments. Figure 3 shows the temperature profiles 
for the lattice with N = 230, showing linear temperature profiles over the whole temperature 
region. This is m e  for other lattices with N = 80, 130, 180 and 280. 

0 50 100 150 200 
lattice size 

Figure 3. TemperaNre profiles For one.dimensional monatomic non-linex Ialtices. The length 
N of the lattices is 230 atom. The ntios Q H / ~ L  of the heat bath temperatures m set to be 
Four for all cases. 

We can empirically express the temperature profiles using a linear function of the form 

x + TH (7 ) 
TH - TL T ( x )  = -- 

N 

where T, and TL are the temperatures at the ends of the specimen lattice and x measures the 
distance from the interface between the specimen lattice and the buffer area at the higher 
temperature. Here we use the notation x instead of the subscript i, for convenience. The 
temperature gradient is given by 

As mentioned in section 1, we assume that the heat current J consists of the diffusive 
or normal heat current J N  and the non-diffusive or ballistic heat current J B  due to MKDV 
solitons: 

J = JN t J B .  (9) 
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The normal heat current JN should obey the following Fourier law: 

where K is the thermal conductivity. The normal energy flow JN is readily found to depend 
on the temperature difference between the ends of the specimen lattice, by substituting (8) 
into (IO). In contrast to the normal energy flow JN, the non-diffusive energy flow JB will 
depend on the temperature difference between the buffer areas. The MKDV solitons are 
excited at the interfaces between the specimen lattice and the buffer areas, the number of 
which increases with the temperature of the buffer areas. Then the net non-diffusive energy 
flow in the specimen lattice depends on the temperature difference, T B , ~  - TB,~. between 
the buffer areas. Because the MKDV solitons decay with propagating distance due to the 
collisions, as will be shown below, the ballistic heat current JB is expressed as a function 
of the lattice size N :  

JB = JB(TB.H - (11) 

4. Thermal conductivity 

Substituting equations (S), (10) and (11) into (9), we obtain an empirical formula for the 
heat transport in the lattice as follows: 

Although the heat current J and the temperatures T, and TL are readily known from the 
numerical simulations, the ballistic heat flow JB is hard to estimate quantitatively. However, 
because the MKDV solitons decay with the propagating distance, due to collisions with the 
phonons, and will not propagate beyond a critical distance 1,. we may ignore the contribution 
of the ballistic heat current JB to J when N z l,. 

In order to check the critical distance l,, we investigate the successive behaviour of a 
pulse excited in the lattice at a finite temperature, by using the participation ratio defined 
by 

where E ; ( t )  is the lattice vibrational energy of the ith lattice sile. The participation ratio 
P ( t )  takes a value from 1/N to unity in accordance with the spatial distribution of the energy 
(Ei( t ) ) .  When all the energies are concentrated entirely on one atom, the participation ratio 
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P ( t )  becomes UN. On the other hand, when all the energies are shared by all of the atoms 
equally, P ( t )  becomes unity. 

Because the MKDV solitons propagate stably at temperatures below the critical 
temperature Zc, the participation ratio P(r) keeps a small constant value, independent of 
the propagating distance or time. Figure 4(a) shows the time evolution of the participation 
ratio P(r )  at temperature T = 0.01. A thermal equilibrium state was maintained before 
the excitation of the pulse. The participation ratios PO) are drastically reduced by the 
excitation of the pulse at f = 0, preserving the reduced magnitude with the propagation 
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distance or time. Figure 4(b) shows the participation ratio P ( t )  versus time t at T = 20. 
The participation ratios P ( t )  exhibit a dip at t = 0 due to the excitation of a pulse as in the 
former case at T = 0.01. In contrast to the previous case, the thermal equilibrium states 
recover quickly. The participation ratios P ( t )  consequently increase and settle down to 
their magnitude at the thermal equilibrium states within a time interval rR, We refer to the 
time interval sR as a relaxation time hereafter. The relaxation time rR is 25 in the present 
case. 

In figure 4, the energies EO of the pulses were set at EO = 20T. In the heat transport 
simulations, the heat pulses generated by the heat bath with OH have energy 4.50H at 
most, according to the three-sigma method. The temperature of the specimen lattices T is 
about @H/3-@H/2 from figure 2. Then the ratio Eo/T becomes of the order of 10. The 
relaxation time SR depends on the ratio Eo/T as well as the temperature T .  Figure 5 shows 
the relaxation time TR versus temperature T for various values of &IT.  The relaxation 
times sR become 30 at T = 10 at most, by taking account of fluctuations of the data, and 
decrease with increasing temperature T .  The ballistic heat current JB cannot consequently 
propagate over 150 sites. We may take this length as the critical propagating distance lcr. 

From these considerations, we estimate the thermal conductivity K .  Dividing equation 
(12) by the absolute temperature gradient (TH - T L ) / N ,  we obtain 

Figure 6 plots J N / ( T H  - TL), the heat current divided by the absolute temperature gradient, 
versus the temperature gradient. Apparently there is no difference between the data of the 
lattices with N 2 180, which are well fitted by a straight line as shown in this figure. 
Although the data for the lattices with N < 180 also have the same magnitude as those of 
the lattices with N 180 below (TH - TL)/N = 0.02, they increase substantially and deviate 
from the straight line above this region. As we discussed above, the critical length 1, of 
the ballistic heat current is roughly 150 sites in length. Because the substantial increase of 
JN/(TH - TL) is seen only for the lattices smaller than la, we may attribute the excess 
of J N / ( T H  - TL) over the linear dependence to the ballistic heat current JB.  At small 
temperature gradients, the temperature difference, TB,H - TB,L, is also small. Then the 
ballistic heat flow is reduced and does not contribute to the total heat current J .  This is the 
reason why there is no difference among the data for all values of N below 0.02. 

To return, we are devoted to evaluating the thermal conductivity K .  Although, according 
to equation (14), the magnitude of JN/(TH - TL) should be independent of the temperature 
gradient for N I,, the numerical data increase linearly with the absolute temperature 
gradient. We have assumed that the normal heat current, JN, obeys equation (lo), which 
is valid for small temperature gradients. For larger temperature gradients, the normal heat 
current JN should be expressed in terms of the squared temperature gradient term. Therefore 
the heat current JN is empirically given by 

The second term of the right hand side of equation (15) has a significant contribution to the 
heat flow when the temperature gradient is large. The thermal conductivity K is defined in 
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Figure 5. The relaxation time a versus tempemture T for Ea/T = IS. 20 and 25. The lattice 
length is N = 400. 

0" 

Figure 6. J N / ( T n  - Tr), the heat c m n t  divided by t he  absolute temperature gradient, versus 
the absolute temperature gradient (TH - T L ) / N  for N = 80, 130, 180, 230 and 280. The solid 
line is drawn using the least-squares method for the dab poinls with N 2 180, Io exhibit the 
extrapolation of the data to zem-temperature gradient. The extrapolated value of K is 90i.5 
The dashed lines are drawn for the data of N = 80 and 130 by the least-squares method. 

the small-temperature-gradient limit, extrapolated by taking a limit of the zero-temperature 
gradient 
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Thus the resultant thermal conductivity K is obtained to be 9O+S from figure 6, independent 
of the lattice size N. 

5. Summary and discussion 

In this paper we examined the heat transport and the dynamical properties of a I D  monatomic 
lattice with harmonic and large quartic interatomic potentials by means of molecular 
dynamics. 

One of the important results of this work is the confirmation of the anomalous behaviour 
of energy diffusion. This phenomenon is caused by the non-diffusive energy flow, which is 
attributed to the propagation of MKDV solitons. Because the MKDv solitons are not able to 
propagate beyond the critical distance I,, due to collisions with thermally excited phonons 
with short wavelengths, the anomalous energy diffusion is observed only inside the critical 
region lcr. This fact means that the anomalous energy diffusion is a size effect and that the 
macroscopic intensive quantities such as the thermal conductivity should be estimated for 
systems larger than the critical length 1,. 

Another important result is the confirmation of Fourier’s law in the non-linear lattice 
without any mass inhomogeneity. The resultant thermal conductivity is independent of the 
local temperature of the lattice, so the local energy conservation law holds in the linear 
temperature profiles, and has a value K = 9O+S, independent of the lattice size. 

It is surprising that the present lattices have different temperature dependence of thermal 
conductivity from the ID and 2D diatomic and Fibonacci Toda lattices and 2D monatomic 
Toda lattices 114-171. In real solids, the temperature dependence of thermal conductivity 
is independent of the type of atomic bond, but depends on the lattice structures, such as 
crystalline or amorphous solid structures 1231. From these facts, the temperature dependence 
of thermal conductivity seemed to be insensitive to types of potential function, and hence 
the thermal conductivity of the present lattice was expected to have the same temperature 
dependence as the previous cases [14-17]. However, the resultant thermal conductivity 
was found to be independent of the local temperature. The difference in the temperature 
dependence of the thermal conductivity may be closely related to the propagation and 
decay mechanisms of the solitary pulses in the non-linear lattices. Therefore further 
microscopic analysis of the energy diffusion processes is needed to investigate the origin of 
the temperature dependence of thermal conductivity. 

In this paper we have studied the non-diffusive energy flow and its effects on energy 
transport phenomena in 1D lattices based on the assumption of two kinds of energy flow. 
The non-diffusive energy flow is not a phenomenon specific to ID lattices but is expected 
in higher dimensions. Therefore we should always take account of the non-diffusive 
energy flow, irrespective of the dimensionality of systems, in the study of energy transport 
phenomena. The method used in this paper will also be useful for analysis of the energy 
transport phenomena in ZD or 3D systems as well as ID lattices. 
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